
MPI on BG/L

Bill Gropp and Rusty Lusk

(other team members: Ralph Butler, Rob Latham, David Ashton,
Brian Toonen, Rob Ross, Rajeev Thakur, Anthony Chan)

Mathematics and Computer Science Division
Argonne National Laboratory

{gropp,lusk}@mcs.anl.gov

Argonne National Laboratory + University of Chicago 2

Outline
• Why MPI on BG/L?
• Challenges for MPI implementations provided by BG/L
• MPICH

• The Abstract Device Approach to MPI implementation
• MPICH-2 and scalability
• Early results of IBM/Argonne Collaboration

• Scalable Process Management
• MPD and the SciDAC Scalable Systems Software Project
• MPI / Process Manager Interface
• MPD and LoadLeveler on BG-L
• Early results of IBM/Argonne Collaboration

• Conclusion
• BG/L will provide at least one convenient and familiar programming

and job scheduling environment

Argonne National Laboratory + University of Chicago 3

IBM Collaborators

• T. J. Watson
• Jose Moreira
• Gheorghe Almasi
• Silvius Rus

• Haifa
• Edi Shmueli
• Yariv Aridor
• Tamar Domany
• Yosef Moatti

Argonne National Laboratory + University of Chicago 4

Why Have MPI on BG/L?

• BG/L does support MPI model
• Separate address spaces (though small) for separate processes

• Vast number of parallel applications ready to run, or at
least ready to begin work on
• No barrier at programming model level (familiar message-

passing model)
• No barrier at language level (C, Fortran, C++, Fortran 90)
• No barrier at communication library level (MPICH)
• Memory requirement barriers likely at data/process level
• Scalability barriers likely at algorithm level

• Demonstration of general purpose nature of machine
• If MPI can be implemented, so can anything else

Argonne National Laboratory + University of Chicago 5

Challenges for an MPI Implementation on
BG/L
• Small memory footprint (fingerprint?) per MPI process
• Scalability of data structures

• Local size must be independent of total number of processes
• Buffer management

• Scalability of algorithms
• Must take advantage of BG/L hardware support, especially for

collective operations
• MPI topology routines will become more important

• Scalability of process manager interactions
• Interaction with MPI library
• Interaction with user

• Convenient familiar direct interface to process manager (mpirun,
mpiexec) or to batch scheduler (LoadLeveler)

Argonne National Laboratory + University of Chicago 6

MPICH
• Goals

• Supply research vehicle for MPI implementation issues
• Promote standard programming model for users
• Provide vendors and others with starting point for specialized MPI

implementations (both commercial and research)
• Architected to support replacement of components

• MPICH-1
• Began during MPI standardization process
• Current version 1.2.4, 2500 downloads/month
• Complete implementation of MPI-1.2, plus I/O from MPI-2
• Basis of many research and vendor implementations

• MPICH-GM from Myrinet
• MPI on ASCI Red (scalable to 3000+ nodes)
• Early Cray, Meiko, SGI, HP/Compaq, NEC, other implementations
• Research groups experimenting with lower levels

• Windows version

Argonne National Laboratory + University of Chicago 7

MPICH-2

• Original goals of MPICH, plus
• Scalability to 100,000 processes
• Improved performance in multiple areas
• Portability to new interconnects
• Thread safety
• Full MPI-2 Standard (I/O, RMA, dynamic processes, more)

• Not yet released
• Detailed design complete and publicly available
• Core functionality (point-to-point and collective operations) from

MPI-1 complete
• Early performance results

• MPI-1 part to be released this fall

Argonne National Laboratory + University of Chicago 8

Structure of MPICH-2

ADI-3 ADIO

MPICH-2

Existing parallel
file systems

PMI

MPD Vendors

Channel
Interface

Myrinet,
Other NIC

Multi-
Method

TCP BG/LPortals MM

Existing

In Progress

For others

Fork
PVFS

Argonne National Laboratory + University of Chicago 9

The Abstract Device Interface
• Key to Performance and Portability
• MPICH-2 based on 3rd-generation ADI design (ADI-3)
• Research Topics

• Combining performance with portability
• Latency reduction
• Multi-method
• Thread safety
• High-performance MPI datatype processing
• Interaction with process management, MPI topology routines
• Multiple approaches to collective operations

• (For example, need not be in terms of point-to-point operations)
• Sophisticated implementation of remote-memory operations
• Dealing with faults

Argonne National Laboratory + University of Chicago 10

Possible Implementations of the ADI
• The “Channel” device

• Small number of functions
• Straightforward to implement
• Sacrifices some opportunities for optimization
• Current approach for BG/L

• The “Multimethod” device
• Allows mixing of communication methods

• TCP, Shared memory, NIC-based (Myrinet, Infiniband, others)
• Made more difficult by MPI’s “ANY_SOURCE” in MPI_Recv
• Intermethod interface by which new methods many be added

• The “Custom” device
• Specialized to a particular environment
• Usable by vendors (e.g., Myricom, who have studied ADI-3)
• Optimum performance
• Under discussion for BG/L

Argonne National Laboratory + University of Chicago 11

ADI Status and Plans

• Status
• TCP implementation of the CH3 implementation of ADI-3 done
• Multimethod implementation of ADI-3 under way
• Both faster than in MPICH-1 (see following charts)

• Plans
• Complete implementation of multimethod device
• Tune and port to other environments (shared memory,

Infiniband)
• Continued vendor collaboration

• Myricom plans to implement ADI-3
• Current discussions with IBM on ADI/CH interface for BG/L
• Collaborations with multiple Infiniband vendors in progress

Argonne National Laboratory + University of Chicago 12

An Example: CH3 Implementation over TCP

• Pollable and active-message data paths
• RMA Path

Argonne National Laboratory + University of Chicago 13

Early Results on Channel/TCP Device

• Conclusion: little added overhead over low-level communication
• But will become more critical with high-performance network

Bandwidth

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Message Size (bytes)

M
B

/s

Raw TCP MPICH-chp4 MPICH2-ch3:tcp

Small Message Latency

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0 500 1000 1500 2000 2500 3000 3500 4000

Message size (bytes)

Ti
m

e
(u

s)

Raw TCP MPICH-chp4 MPICH2-ch3:tcp

Argonne National Laboratory + University of Chicago 14

BG/L and the MPICH2 Architecture

Message Passing Interface MPI

Abstract Device Interface MPID

CH3

TCP/IP

Channel Interface

Types, key values
notion of requests

Transform to
pt2pt ops

Request
progress engine

Interface Implementation

BG/L TorusBG/L Torus

BG/L TreeBG/L Tree

BG/L GIBG/L GI

Special opportunities:
• collective bypass
• scalable buffer mgmnt
• out-of-order network

MPI

USER
MPI_Send
MPI_Bcast

Abstract Device Interface/MPID

MPID_Send

Channel Interface/CH3

CH_Write

Transport: Torus Message Layer

Channel_Write

Torus Packet Layer

Torus_Send

Torus hardware

lfpdux()
sfpdx()

M
P

IC
H

2
B

G
/L

 s
of

tw
ar

e

ADI-3
Impl.

Channel
Impl.

Argonne National Laboratory + University of Chicago 16

Some Questions That You Are About
to Ask
• Out-of-order delivery of packets in the network

• Channel device enhanced to simplify support
• Few MPI communications require ordering; channel supports ordering

of message headers to enable message tracing tools such as
Jumpshot

• Implementation of collectives without MPI point-to-point
(e.g., using the other network)
• Improved version of mechanism used in MPICH-1 (introduced for the

Meiko) allows each collective operation to use special routines on a
communicator-by-communicator basis

• Scalable eager buffer and connection management
• Dynamic buffer allocation and connection management is consistent

with the ADI design (virtual connection table, currently an array, can be
replaced with a sparse array).

• Polling and non-polling
• Design supports both. Neither is always best.

Argonne National Laboratory + University of Chicago 17

Some More Questions
• Thread safety

• Careful use of atomic operations avoids locks in many cases. Both
configure-time and runtime control of the level of thread safety. All
versions support OpenMP-style loop parallelism

• Process(or) topology
• Interface through MPI_Cart_create and MPI_Graph_create

• RMA (one-sided)
• Design uses operation aggregation to eliminate extra operations and

access windows to eliminate serialization present in other
implementations of MPI RMA

• Rendezvous optimizations
• Single communication method case can use an “unexpected receive”

approach, already used in some prototype MPI implementations, to
avoid one handshake message

Argonne National Laboratory + University of Chicago 18

Another Question

• How to best use the second CPU?
• Multiple modes possible

• 2nd CPU idle (“heater” mode)
• 2nd CPU runs 2nd thread in same MPI process (“symmetric”

mode)
– At least initially
– Exploring using for 2nd MPI process (“virtual node” mode)

• 2nd CPU acts as communication co-processor
– Allows true overlap of computation and communication
– Allows peak performance

• “middle packet” optimization
• Current plan: support all modes

Argonne National Laboratory + University of Chicago 19

MPI in BG/L: Using the 2nd CPU
• Processing modes:

• heater mode
• symmetric

• 1 MPI rank per ASIC
• communication co-processor

• Compute processor:
• post, allocate, match graduate

MPI requests
• progress at channel protocol

level

• Comm. processor:
• progress at transport level

• packets
• messages

Ground Rule #1:

MPI primitives are executed
by compute processor

Argonne National Laboratory + University of Chicago 20

Communication co-processor
• co-processor looks like a big

virtual torus device

+ high performance

+ no coherency problem

+ compatible

+ perfect for a first cut

- latency

- can do better

Computation
processor

MPI

MPID

CH3

msg layer

pkt layer

L3 cache virtual FIFO

Comm
processor

real FIFOs

Argonne National Laboratory + University of Chicago 21

“Middle packet” optimization

• aligned packets of
matched/allocated
requests

• coprocessor streams
to/from request buffers

+ truly 0-copy
+ good latency
+ true comm. overlap
- needs co-ordination
- fragile
- only for aligned packets

MPI buffer (DDR memory)

Computation
processor

msg layer

compute cpu cache

Comm
processor real FIFOs

compute cpu cache

3. flush
4. invalidate
5. announce

2. recognize

1. setup

1. setup

Argonne National Laboratory + University of Chicago 22

Status of BG/L MPI Implementation
Today
• Running (!) in

• Emulation
• native Linux/IA32
• 2:1 slowdown

• Simulation
• Linux/bglsim
• ∼103 slowdown

• Message Layer supports CH3 “eager protocol”
• Does not yet provide correct inter-message ordering
• Does not implement optimistic error control
• Does not yet have specialized collective operations
• MPICH-2 does not yet have all of MPI, but:

• NAS parallel benchmarks
• experiments on 2 to 4 processors

Argonne National Laboratory + University of Chicago 23

Process Manager Research Issues
• Identification of proper process manager functions

• Starting (with arguments and environment), terminating, signaling,
handling stdio, …

• Interface between process manager and communication library
• Process placement and rank assignment
• Dynamic connection establishment
• MPI-2 functionality: Spawn, Connect, Accept, Singleton Init

• Interface between process manager and rest of system software
• Cannot be separated from system software architecture in general
• Process manager is important component of component-based

architecture for system software, communicating with multiple other
components

• Scalability
• A problem even on existing large systems
• BG/L presents new challenges

Argonne National Laboratory + University of Chicago 24

Process Manager Research at ANL

• MPD – prototype process management system
• Original Motivation: faster startup of interactive

MPICH programs
• Evolved to explore general process management

issues, especially in the area of communication
between process manager and parallel library

• Laid foundation for scalable system software research
in general

• MPD-1 is part of current MPICH distribution
• Much faster than earlier schemes
• Manages stdio scalably
• Tool-friendly (e.g. supports TotalView)

Argonne National Laboratory + University of Chicago 25

Requirements on Process Manager
from Message-Passing Library
• Individual process requirements

• Same as for sequential job

• To be brought into existence

• To receive command-line arguments

• To be able to access environment variables

• Requirements derived from being part of a parallel job
• Find size of job: MPI_Comm_size(MPI_COMM_WORLD, &size)

• Identify self: MPI_Comm_rank(MPI_COMM_WORLD, &myrank)

• Find out how to contact other processes: MPI_Send(…)

Argonne National Laboratory + University of Chicago 26

Finding the Other Processes

• Need to identify one or several ways of making
contact
• Shared memory (queue pointer)
• TCP (host and port for connect)
• Other network addressing mechanisms (Infiniband)
• (x,y,z) torus coordinates in BG/L

• Depends on target process
• Only process manager knows where other processes

are
• Even process manager might not know everything

necessary (e.g. dynamically obtained port)
• “Business Card” approach

Argonne National Laboratory + University of Chicago 27

Approach
• Define interface from parallel library (or application) to process

manager
• Allows multiple implementations
• MPD is a scalable implementation (used in MPICH ch_p4mpd device)

• PMI (Process Manager Interface)
• Conceptually: access to spaces of key=value pairs
• No reserved keys
• Allows very general use
• Basic part: for MPI-1, other simple message-passing libraries
• Advanced part: multiple keyval spaces for MPI-2 functionality, grid

software

• Provide scalable PMI implementation with fast process startup
• Let others do so too

Argonne National Laboratory + University of Chicago 28

The PMI Interface

• PMI_Init
• PMI_Get_size
• PMI_Get_rank
• PMI_Put
• PMI_Get
• PMI_Fence
• PMI_End

• More functions for managing multiple keyval spaces
• Needed to support MPI-2, grid applications

Argonne National Laboratory + University of Chicago 29

MPD

Architecture of MPD:

mpirun

Scheduler mpd’s

managers

application
processes

Argonne National Laboratory + University of Chicago 30

Interesting Features

• Security
• “Challenge-response” system, using passwords in protected

files and encryption of random numbers
• Speed not important since daemon startup is separate from job

startup

• Fault Tolerance
• When a daemon dies, this is detected and the ring is reknit =>

minimal fault tolerance
• New daemon can be inserted in ring

• Signals
• Signals can be delivered to clients by their managers

Argonne National Laboratory + University of Chicago 31

More Interesting Features

• Uses of signal delivery
• signals delivered to a job-starting console process are

propagated to the clients
• so can suspend, resume, or kill an mpirun

• one client can signal another
• can be used in setting up connections dynamically

• a separate console process can signal currently running jobs
• can be used to implement a primitive gang scheduler

• Mpirun also represents parallel job in other ways
totalview mpirun –np 32 a.out

runs 32-process job under TotalView control

Argonne National Laboratory + University of Chicago 32

More Interesting Features

• Support for parallel libraries
• implements the PMI process manager interface, used by

MPICH.

• groups, put, get, fence, spawn

• simple distributed database maintained in the managers

• solves “pre-communication” problem of startup

• makes MPD independent from MPICH while still providing
needed features

Argonne National Laboratory + University of Chicago 33

Handling Standard I/O

• Managers capture stdout and
stderr (separately) from their clients

• Managers forward stdout and
stderr (separately) up a pair of
binary trees to the console, optionally
adding a rank identifier as line label

• Console’s stdin is delivered to
stdin of client 0 by default, but can
be controlled to broadcast or go to
specific client

mpd ring

manager
ring

I/O tree

client

Argonne National Laboratory + University of Chicago 34

The Scalable Systems Software
SciDAC Project
• Multiple Institutions (most national labs, plus NCSA)
• Targeting systems software for large systems, particularly

clusters
• Component architecture
• Currently using XML for inter-component communication
• Status

• Early demos; watch for more at SC’02, some components in use at
Argonne on Chiba City cluster

• Detailed XML interface to PM component, implemented by MPD
• One powerful effect: forcing rigorous (and aggressive) definition

of what a process manager should do and what should be
encapsulated in other components
• Start (with arguments and environment variables), terminate, cleanup
• Signal delivery
• Interactive support (e.g. for debugging) – requires stdio management

Argonne National Laboratory + University of Chicago 35

What Does This Have to Do with MPI
on BGL?
• MPI library needs PMI interface implementation
• LoadLeveler desirable as scheduler

• It exists!
• Provides sophisticated scheduling capabilities
• Familiar to large class of users

• LoadLeveler can be used as scheduling component in Scalable
System Software Center sense
• Interface to process manager well defined
• Interface has needed features
• MPD-based process manager ready for use
• Currently collaborating with IBM/Haifa group on this approach to

scheduling and process management for BG/L
• LoadLeveler only one option for scheduling component

• Clear definitions of interfaces will support use of other schedulers
• (e.g., SLURM)

Argonne National Laboratory + University of Chicago 36

MPD Supports Multiple Styles of
Process Management
• Scheduler can compose and execute mpirun command that

communicates with MPD ring
• Easy to write BG/L-specific mpirun scripts

• (e.g. to specify topology information)

• Scheduler can communicate directly with mpd ring
• Scheduler, other components of system software can

communicate with persistent process manager component,
using public XML interface

• Scheduler can allocate nodes for interactive use and user can
run mpirun interactively
• (e.g. for debugging)

• User can set up own MPD ring in user mode
• (e.g. for development)

Argonne National Laboratory + University of Chicago 37

LoadLeveler and MPD for BG/L
• Goals

• Provide functional and familiar job submission, scheduling, and
process management environment on BG/L

• Change existing code base (LL, MPICH, MPD) as little as possible

• Current Plan: Run MPD’s as root and have LL submit job to
MPD’s to start user job as user

• LL can schedule set of nodes for user to use interactively; then
user can use mpirun to run series of short interactive jobs on
subsets of allocated nodes
• Ensure that user can only use scheduled nodes

• Build foundation for development of other scheduling and
process management approaches

Argonne National Laboratory + University of Chicago 38

BG/L Architecture

• Example : 2 I/O nodes, each with 64 compute nodes

Linux
Machine

A

Linux
Machine

B

MPI task 2
MPI task 1

Parallel Job 1

Parallel Job 2

MPI task 0

MPI task 1 MPI task 0

C-node #0

C-node #23

Argonne National Laboratory + University of Chicago 39

Proxy processes

• A proxy process (Linux process) is created for
each MPI task

• The task is not visible to the operating-system
scheduler

• The proxy interfaces between the operating-
system and the task, passing signals, messages
etc…

• It provides transparent communication with the
MPI task

• MPD will start these proxy processes
• Need to be able to pass separate arguments to each

Argonne National Laboratory + University of Chicago 40

Running the Proxies on the Linux
Nodes

mpd

mpdman mpdman mpdman mpdman mpdman mpdman

proxy proxy proxy proxy proxy proxy

proxy cpi 6

proxy cpi 5

mpd

mpdrun

LL daemon

Proxies still
under discussion

Run as root

Run as
user

Argonne National Laboratory + University of Chicago 41

Conclusion

• IBM and ANL are collaborating in two related areas to
improve the usability of BG/L
• MPI implementation
• Process management

• In each case timing seemed to be perfect to connect
existing research projects to new scalability
challenges

• Early results are promising

